2018年12月28日

浪子回頭與不歸路

游森棚/任教於臺灣師範大學數學系及空軍官校。

在這2星期的研究所組合學課堂上,我介紹了一些古典機率論中可以用組合方法處理的經典結果。這些定理相當有趣,同學反應熱烈,他們興奮情緒也感染了我,因此打鐵趁熱,在此與讀者分享。

青蛙左右跳
有一隻青蛙從原點開始,每一步往左或往右跳一單位,機率各是1∕2。讀者先猜一猜,青蛙能跳到往左100單位遠或往右100單位遠的機率是多少?

答案是1,不僅如此,事實上不管一開始指定的終點(整數m或–m)離原點多遠,青蛙能跳到±m的機率就是1。換句話說,青蛙一開始在地球上,每次向左或向右跳一步,只要給牠夠久的時間,則牠一定可以跳出太陽系!這真是令人驚異的結果。甚至我們還可以證明,從原點要跳到±m,「平均」需要m^2步(數學的說法是跳到±m所需步數的期望值是m^2)。

醉漢回家
青蛙跳的另一個常見的說法是醉漢回家。酒吧位於數線上的一個整數點,從酒吧走出1位醉漢,他家在數線上的另一整數點。醉醺醺的他每一步都踉蹌往左往右,機率各是1∕2。那麼,由青蛙跳的結果告訴我們:若把酒吧當原點,家當作m,醉漢一定回得了家。

學生笑說,那這樣喝得再怎麼茫都沒關係了。是的,而且更有趣的是,既然回到家的機率是1,一旦回到家後,把家當作新的原點,再套一次青蛙跳的結論,那醉漢再晃回酒吧的機率也是1。以此類推,這個醉漢會到家無限多次,也會再回到酒吧無限多次──果真是本性難移。

關心數學教育的臺灣師生大概都知道波利亞(George Polya),主要是他對數學教育與數學發現的過程有一套影響深遠的理論。但大多數人不知道的是,波利亞是一個非常好的數學家,在機率論中他做出了不少開創的結果。我們現在知道從原點出發的青蛙(或醉漢),不僅可以想走多遠就走多遠,而且還會走回原點無限多次,但這一切都基於每一步向左向右都是1∕2的假設。如果往兩邊的機率不一樣呢?結論就完全不同了。波利亞證明只要每一步固定往某一邊的機率比 1∕2大一點點,則青蛙或醉漢只會在有限多次回到原點。

十賭九輸
青蛙跳的進階形式是賭徒破產問題。1個賭徒拿著100萬元進賭場,假設每局1萬元,而且這個賭場非常公正,每一局讓你贏或輸的機率是1∕2。則我們把100萬元當作原點,輸光當作m。青蛙跳的結果告訴我們,賭博輸光的機率是1。這真是一個非常哲學性和富有教育性的結果──不只是十賭九輸,根本是十賭十輸。

但現實上,上述假設不合常理。首先,賭徒的心態通常是撈一票就走人,這樣看來還是有機會贏錢──畢竟青蛙往另一邊走到m的機率也是1,只要過程中不要輸光,都還是有機會。更關鍵的是,賭場不可能讓玩家每把獲勝的機率是1∕2,一定會比1∕2少,否則賭場賺什麼呢?

好吧,如果每一局獲勝機率是p,一個賭徒拿了a元的本錢進賭場,心裡想著只要贏到b元(ba)就走人。而且他賭性堅強,除非輸光無法再押,否則不到目標絕不甘休。那麼,這個賭徒贏到 b元的機率是多少?答案是 ......【更多內容請閱讀科學月刊第589期】

沒有留言: