2015年11月2日

氣候變遷與生物反應

作者/蘇世顥(任職於文化大學大氣科學系。主要研究各種大氣物理現象,對於各種天氣與氣候問題都抱持高度的興趣)、蘇世珩(任職於美國威斯康辛州立大學麥迪遜分校遺傳學系。主修植物遺傳育種,喜歡植物與其生長環境間的交互作用的議題)、林博雄(任職於臺灣大學大氣科學系。主授「大氣測計」,開設「生物氣象」和「航空氣象」選修課,喜愛環境生態與氣象的跨領域研究議題)

Pixabay
讀文章前,我們不妨先做個小小的實驗吧!如果我們用Google搜尋「椰子樹」圖片,螢幕上所出現大部分都是白雲、沙灘、海洋的熱帶海島風光;但是當你搜尋「仙人掌」圖片時,所跳出來的結果大部分都是沙漠的景色。我相信大家對於這樣的結果一點都不意外,因為動植物的生長與分布都會受到氣候條件的限制,就如同你不會預期看到野生的獅子會和北極熊當鄰居。

傳統上,在地理學界常被使用的柯本氣候分類法(Köppen climate classification),便是基於氣候會影響自然植被的特性來區分不同的氣候型態,而氣候影響生物分布的特性在考古、地質研究領域也被廣泛應用。舉例來說,有一種名為舌羊齒(Glossopteris)的石炭– 二疊紀植物,因為這類植物的種子很大,無法透過風力跨洋傳送,但在南美洲、非洲、印度與南極洲都有發現它的化石,所以可以推斷在早期這些陸地應該是彼此相連,並且氣候環境應是相似。

既然我們都瞭解氣候會影響生物的活動與分布,那當氣候狀態發生變化時生物該如何因應?對於大多數的動物而言,由於活動能力較強,「遷徙」通常是動物面對大氣環境條件改變的第一選項,所以我們可以觀察到在非洲草原上的野生動物會隨著乾、濕季的變化,而進行大規模和長距離的遷移,候鳥也會隨季節變化而有南遷北返的現象。但是,如果大氣環境條件改變的速度太快或是發生改變的範圍太廣,生物無法在短時間內靠有限的移動找到適合生活的區域,那生物就必須改變生活模式來應對,例如「休眠」。



舌羊齒化石。(wikipedia)
氣候影響生物族群分布
過去半個世紀以來,受到氣候變遷的影響,極端天氣事件發生的頻率有增高的趨勢,這意味著若是局部地區大氣環境條件的改變速度加快,當地的生物族群也將面臨一定程度的影響。另一方面,由於受到人類活動的影響,不但造成生物族群原始生存環境的破壞,同時也因為農業的發展導致在一定範圍中出現大面積同質性的作物,使得生物族群間的平衡與生物多樣性也逐漸消失。科學家注意到這些現象,也因此進行了一系列研究。

經過大範圍的調查與研究,科學家們發現生物受到氣候變遷影響,族群分布的狀況已經悄悄地發生了變化。這些改變除了先前提到的物種遷移之外,族群的數量以及生態系中的生物網路也發生了變化。生態學家透過收集與分析歷年生物族群分布狀態與氣候條件的相關性資料,進一步設計出能夠模擬與推測物種族群變化的數值模型。在一份針對南非地區動物種族群分布與氣候變化的研究中,生態學家便利用這種數值模型推估當地179 個動物族群,在平均氣溫升高2℃的情境之下的族群變化趨勢。數值模擬結果顯示,78% 物種族群會發生縮減,17% 物種族群則產生擴張,大約2% 的族群會停留在當地並滅絕,只有3% 的物種不受到氣候變遷的影響。這一研究結果也顯示,大部分滅絕物種的生活環境都在原先氣候環境就極為乾燥的南非西部地區,存活下來的物種中有41% 動物族群會因為乾旱因素向東遷移,僅有少部分物種會反向往西遷移,這樣的生態現象被稱之為「群體遷移(population shifting)」。

這一電腦模擬結果主要展現出先前我們提過的動物有因應氣候變化而遷徙移動的特性,以尋找適合生存環境繁殖下一代。這一方法對於無法自由活動的植物而言,卻是無法達成的任務,那麼植物又要如何因應氣候變遷進行調適呢?在最新的生態學研究中,針對1350 項不同的歐洲植物物種,在7 種不同的氣候變遷情境下進行模擬分析,其結論與先前模擬氣候變遷下動物族群反應的研究出現歧異;在這次的氣候情境模擬結果中,超過一半以上的植物物種將在二十一世紀末出現滅絕的危機。

更值得我們注意的是,在這些不同的研究結果都顯示,不管是動物族群的遷移或者是植物族群的滅絕,都會造成生態網路重大的變化。生態網路的改變,對於生態系統平衡是非常危險的一件事,很有可能藉由連鎖反應導致更為複雜的生態系崩解問題。雖然動物族群具備移動能力,但做為食物鏈中的任何一個階層,若無法適應氣候的變遷而發生族群數量的變化甚至滅絕,則整個生態系依舊會有崩解危機。另一方面,生物族群的遷移,也可能造成被遷入地區的原始生態系統平衡遭到破壞。所以我們不能單純利用遷徙能力來討論動物與植物族群對於氣候變遷的反應,任何一種物種的族群數量改變都有可能對整體生態系統平衡產生影響。

植物適應氣候變遷的演化
雖然植物族群因為缺乏快速移動的能力,面對氣候變遷時的調適能力較差,但是也不是束手無策。在植物的演化過程中,植物已經發展出透過調控其生理反應來適應不同的氣候環境的機制。例如,葉片裡的葉綠體是植物行光合作用產生能量的重要胞器,但是如果光照強度太強時,對於植物的生長也會出現不利因素。科學家發現植物在不同的光照強度之下,透過葉綠體在植物葉片內的移動、葉綠體的聚合和分散,或葉綠餅轉向的方式來調整接受光子(photon)的數量。這樣的葉綠體移動(chloroplast migration)過程,是由植物體內的基因進行一系列的訊息調控所導致。

此外,在不同的氣候環境下,植物經過長時間演化後,會自然產生對於不同氣候環境條件反應的差異,這樣的差異通常存在於植物基因組內,我們稱為植物多樣性,而植物也可以藉由雜交的方式引進優勢基因,進一步的進行對氣候變遷的調適。

以臺灣的主食稻米為例,在自然環境中自然演化出適合缺水環境的旱稻(upland rice)以及必須生長在豐水環境的水稻(wetland rice)。科學家分別將這兩種稻米基因進行比對分析後發現,在演化過程中稻米裡有一組膜蛋白(Plasma membrane Intrinsic Proteins, PIPs)的控制基因,兩種稻米的「基因表達量」在遇到乾旱時,就會產生顯著的差異。當遇到乾旱環境時,旱稻的PIPs 基因會大量表達,但在相同環境中的水稻其PIPs 卻沒有明顯的反應,而此一差異就有利於旱稻在乾旱環境下生存。透過兩種稻米的雜交,就可以將抗旱基因導入原先缺乏的水稻中,進一步提高水稻的抗旱能力。

然而這些防衛機制也都只能因應一定程度的氣候變化,如果氣候變遷的速度與幅度超過植物自體防衛機制能夠調控的範圍,將對於物種的延續將造成不可彌補的傷害。


氣候亦受生物影響
生物會受到氣候變遷的影響,氣候也會受到生物活動的影響而發生改變。根據地球系統的能量收支平衡原理,當地表狀態改變時可能同時改變了局地的輻射能量收支平衡與水文循環的機制,再造成局地氣候狀態改變。美國的西北太平洋國家實驗室(Pacific Northwest National Laboratory)近期一項研究成果顯示,人為灌溉所造成的地表植被改變,不只增加土壤中的水分含量,更進一步改變了當地的蒸發與蒸散量,所導致的局地氣候反應是大氣比較容易形成淺雲(shallow clouds)。淺雲的存在會增加當地的反照率(albedo),進一步透過大氣輻射平衡機制導致當地的氣溫下降。

這類生物圈與大氣圈之間的反饋機制,最著名的就是1972年由英國科學家洛夫洛克(James Lovelock)所提出的「蓋亞假說」;這個假說剛被提出時因為缺乏嚴謹的科學機制探討,所以並不為學界所接受。

蓋亞假說:洛夫洛克在1972 年的論文中提到,如果考慮到地球上所有存在的環境系統間會相互影響,那生物圈(biosphere)會扮演十分重要的角色。如果比較地球原始大氣成分與現今大氣的氧氣的含量,便可知道生物的光合作用改變的大氣的組成。這也是造成地球大氣中的二氧化碳含量,與在太陽系中位置相似的火星和金星有顯著差異的原因。進一步的衍生此一概念,在生物與地球系統的相互作用下,能使環境系統構成一個自我調整的整體。


蓋亞學說之黑白雛菊星球。
為了解釋此一假說背後的物理機制,洛夫洛克於1981 年利用電腦模式模擬一個表面僅有黑白兩色雛菊的星球地表溫度的變化來說明。這數值模式的結構十分單純,白雛菊反照率高,但是喜歡生長於高溫的環境;黑雛菊反照率低,同時只在氣溫較低的環境中生長。當地表溫度升高時,白雛菊覆蓋的面積將增加,進一步導致地表反照率上升;反照率上升會使大部分的太陽輻射反射回太空,所以所吸收到的淨能量會減少,漸漸的地表溫度便會下降。

當地表溫度下降到一定程度時,黑雛菊覆蓋的面積將會增加,導致反照率會降低,進一步使地表溫度再度上升。這樣的生物圈與大氣圈的負回饋機制,可以有效的建立起一個平衡系統;雖然這一過程中的物種分布與數量會不斷變化,但是地表溫度變化卻能被限制在一定的範圍之內。這種完美的氣候系統必須建立在無外在因素干擾的假設之下才可以成立,如果有其他非自然的人為影響,便很有可能導致平衡系統的潰散。

綜合言之,瞭解氣候變化與生物族群間的反應機制,是我們面對氣候變遷調適的重要課題之一。

沒有留言: